Dosimetric impact of density variations in Solid Water 457 water‐equivalent slabs
نویسندگان
چکیده
The purpose of this study was to determine the dosimetric impact of density variations observed in water-equivalent solid slabs. Measurements were performed using two 30 cm × 30 cm water-equivalent slabs, one being 4 cm think and the other 5 cm thick. The location and extent of density variations were determined by computed tomography (CT) scans. Additional imaging measurements were made with an amorphous silicon megavoltage portal imaging device and an ultrasound unit. Dosimetric measurements were conducted with a 2D ion chamber array, and a scanned diode in water. Additional measurements and calculations were made of small rectilinear void inhomogeneities formed with water-equivalent slabs, using a 2D ion chamber array and the convolution superposition algorithm. Two general types of density variation features were observed on CT images: 1) regions of many centimeters across, but typically only a few millimeters thick, with electron densities a few percent lower than the bulk material, and 2) cylindrical regions roughly 0.2 cm in diameter and up to 20 cm long with electron densities up to 5% lower than the surrounding material. The density variations were not visible on kilovoltage, megavoltage or ultrasound images. The dosimetric impact of the density variations were not detectable to within 0.1% using the 2D ion chamber array or the scanning photon diode at distances 0.4 cm to 2 cm beyond the features. High-resolution dosimetric calculations using the convolution-superposition algorithm with density corrections enabled on CT-based datasets showed no discernable dosimetric impact. Calculations and measurements on simulated voids place the upper limit on possible dosimetric variations from observed density variations at much less than 0.6%. CT imaging of water-equivalent slabs may reveal density variations which are otherwise unobserved with kV, MV, or ultrasound imaging. No dosimetric impact from these features was measureable with an ion chamber array or scanned photon diode. Consequently, they were determined to be acceptable for all clinical use.
منابع مشابه
Evaluation of Lung Density and Its Dosimetric Impact on Lung Cancer Radiotherapy: A Simulation Study
Background: The dosimetric parameters required in lung cancer radiation therapy are taken from a homogeneous water phantom; however, during treatment, the expected results are being affected because of its inhomogeneity. Therefore, it becomes necessary to quantify these deviations.Objective: The present study has been undertaken to find out inter- and intra- lung density variations and its dosi...
متن کاملCalculation of WER values of some dosimetric plastic materials applied at helium ion beam therapy
In this research, water equivalent ratios (WER) at helium ion beam energy ranging 25-250 MeV/u for four potential plastic dosimetric materials: polycarbonate (PC), polypropylene (PP), polymethyl methacrylate (PMMA), and paraffin have been calculated using MCNPX Monte Carlo code. Among studied materials, PC and PP with 0.979 and 1.177 show minimum and maximum differences with water respectively....
متن کاملComparative evaluation of modern dosimetry techniques near low‐ and high‐density heterogeneities
The purpose of this study is to compare performance of several dosimetric meth-ods in heterogeneous phantoms irradiated by 6 and 18 MV beams. Monte Carlo (MC) calculations were used, along with two versions of Acuros XB, anisotropic analytical algorithm (AAA), EBT2 film, and MOSkin dosimeters. Percent depth doses (PDD) were calculated and measured in three heterogeneous phantoms. The first two ...
متن کاملMaterial-specific Conversion Factors for Different Solid Phantoms Used in the Dosimetry of Different Brachytherapy Sources
Introduction Based on Task Group No. 43 (TG-43U1) recommendations, water phantom is proposed as a reference phantom for the dosimetry of brachytherapy sources. The experimental determination of TG-43 parameters is usually performed in water-equivalent solid phantoms. The purpose of this study was to determine the conversion factors for equalizing solid phantoms to water. Materials and Methods T...
متن کاملDose correction in lung for HDR breast brachytherapy
PURPOSE To evaluate the dosimetric impact of lung tissue in Ir-192 APBI. MATERIAL AND METHODS In a 40 × 40 × 40 cm(3) water tank, an Accelerated Partial Breast Irradiation (APBI) brachytherapy balloon inflated to 4 cm diameter was situated directly below the center of a 30 × 30 × 1 cm(3) solid water slab. Nine cm of solid water was stacked above the 1 cm base. A parallel plate ion chamber was...
متن کامل